Generalized Transitive Distance with Minimum Spanning Random Forest
نویسندگان
چکیده
Transitive distance is an ultrametric with elegant properties for clustering. Conventional transitive distance can be found by referring to the minimum spanning tree (MST). We show that such distance metric can be generalized onto a minimum spanning random forest (MSRF) with element-wise max pooling over the set of transitive distance matrices from an MSRF. Our proposed approach is both intuitively reasonable and theoretically attractive. Intuitively, max pooling alleviates undesired short links with single MST when noise is present. Theoretically, one can see that the distance metric obtained max pooling is still an ultrametric, rendering many good clustering properties. Comprehensive experiments on data clustering and image segmentation show that MSRF with max pooling improves the clustering performance over single MST and achieves state of the art performance on the Berkeley Segmentation Dataset.
منابع مشابه
A Generalized Distance in Graphs and Centered Partitions
This paper is concerned with a new distance in undirected graphs with weighted edges, which gives new insights into the structure of all minimum spanning trees of a graph. This distance is a generalized one, in the sense that it takes values in a certain Heyting semigroup. More precisely, it associates with each pair of distinct vertices in a connected component of a graph the set of all paths ...
متن کاملTree Spanners, Cayley Graphs, and Diametrically Uniform Graphs
In line with symmetrical graphs such as Cayley graphs and vertex transitive graphs, we introduce a new class of symmetrical graphs called diametrically uniform graphs. The class of diametrically uniform graphs includes vertex transitive graphs and hence Cayley graphs. A tree t-spanner of graph G is a spanning tree T in which the distance between every pair of vertices is at most t times their d...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملA generalized inverse for graphs with absorption
We consider weighted, directed graphs with a notion of absorption on the vertices, related to absorbing random walks on graphs. We define a generalized inverse of the graph Laplacian, called the absorption inverse, that reflects both the graph structure as well as the absorption rates on the vertices. Properties of this generalized inverse are presented, including a matrix forest theorem relati...
متن کاملMinimum Spanning Tree with Uncertain Random Weights
This paper considers the minimum spanning tree problem with uncertain random weights in an uncertain random network. The concept of uncertain random minimum spanning tree is initiated for minimum spanning tree problem with uncertain random edge weights. A model is presented to formulate a specific minimum spanning tree problem with uncertain random edge weights involving a distance chance distr...
متن کامل